Rabu, 11 Desember 2013

makalah Teorema phythagoras


Makalah teorema phytagoras

DISUSUN
O
L
E
H

Nama : Tasya Nursahadah Ramadhani Irwan

Sekolah : MTs. Negeri Gorontalo kelas Vlll-9

A.    pendahuluan
            Pythagoras (582 SM  496 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan danfilsuf Yunani yang paling dikenal melalui teoremanya.Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.
Salah satu peninggalan Pythagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis.


B. Teorema Pythagoras
  Pythagoras menyatakan bahwa : “Untuk setiap segitiga siku-siku berlaku kuadrat panjang sisi miring (Hipotenusa) sama dengan jumlah kuadrat panjang sisi siku-sikunya.”
     jika c adalah panjang sisi miring/hipotenusa segitiga, a dan b adalah panjang sisi siku-siku. Berdasarkan teorema Pythagoras di atas maka diperoleh hubungan:
c2 = a2 + b2
Dalil pythagoras di atas dapat diturunkan menjadi:
a2 = c2 – b2
b2 = c2 – a2
Catatan : Dalam menentukan persamaan Pythagoras yang perlu diperhatikan adalah siapa yang berkedudukan sebagai hipotenusa/sisi miring.
Contoh :
Tentukan rumus pythagoras dan turunan dari segitiga yang memiliki panjang sisi miring a dan sisi siku-sikunya b dan c.
Rumus Pythagoras      : a2 = b2 + c2
Turunannya                   : b2 = a2 – c2
                                               c2 = a2 – b2
C.  Menghitung Panjang sisi segitiga siku-siku
Contoh :
1. Pada suatu segitiga ABC siku-siku di titik A. panjang AB= 4 cm dan AC= 3 cm.  Hitunglah panjang BC!
Jawab:
BC2 = AC2 + AB2
BC2 = 32 + 42
BC2 = 9 + 16
BC2 = 25
BC  = 5 cm
2. Panjang sisi siku-siku dalam segitiga siku-siku adalah 4x cm dan 3x cm. Jika panjang sisi hipotenusanya 20 cm. Tentukan nilai x.
AC2 = AB2 + BC2
202  = (4x)2 + (3x)2
400  = 16x2 + 9x2\
400  = 25x2
16    = x2
= x
3. Sebuah kapal berlayar ke arah Barat sejauh 80 km, kemudian ke arah utara sejauh 60 km. Hitunglah jarak kapal sekarang dari jarak semula.
jawab:
OU2 = OB2 + UB2
OU2 = 802 + 602
OU2 = 6.400 + 3.600
OU2 = 10.000
OU  = 100 km

D. Menentukan Jenis Segitiga jika Diketahui Panjang Sisinya dan Triple Pythagoras
1. Kebalikan Dalil Pythagoras
Dalil pythagoras menyatakan bahwa dalam segitiga ABC, jika sudut A siku-siku maka berlaku a2= b2 + c2.
Dalam    ABC, apabila a adalah sisi dihadapan sudut A, b adalah sisi dihadapan sudut B, c adalah sisi sihadapan sudut C, maka berlaku kebalikan Teorama Pythagoras, yaitu:
Jika a2 = b2 + c2 maka     ABC siku-siku di A.
Jika b2 = a2 +c2 maka    ABC siku-siku di B.
Jika c2 = a2 + b2 maka    ABC siku-siku di C.
Dengan menggunakan prinsip kebalikan dalil Pythagoras, kita dapat menentukan apakah suatu segitiga merupakan segitiga lancip atau tumpul.
Jika a2 = b2 + c2 maka     ABC adalah segitiga siku-siku.
Jika a2 > b2 + c2 maka     ABC adalah segitiga tumpul.
Jika a2 < b2 + c2 maka     ABC adalah segitiga lancip.
Contoh :
Tentukan jenis segitiga yang memiliki panjang sisi
1. 5 cm, 7 cm dan 8 cm.
Jawab: sisi terpanjang adalah 8 cm, maka a= 8 cm, b = 7cm dan c = 5 cm
a2 = 82 = 64
b2 + c2 = 72 + 52
b2 + c2 = 49 + 25
b2 + c2 = 74
karena a2 < b2 + c2, maka segitiga tersebut adalah segitiga lanci
2. 8cm, 7cm dan 12 cm
Jawab: sisi terpanjang adalah 12 cm, maka a= 12 cm, b = 7cm dan c = 8 cm
a2 = 122 = 144
b2 + c2 = 72 + 82
b2 + c2 = 49 + 64
b2 + c2 = 113
karena a2 > b2 + c2, maka segitiga tersebut adalah segitiga tumpul
2. Triple Pythagoras
Yaitu pasangan tiga bilangan bulat positif yang memenuhi kesamaan “kuadrat bilangan terbesar sama dengan jumlah kuadrat kedua bilangan yang lain.”
Contoh :
3, 4 dan 5 adalah triple Pythagoras sebab, 52 = 42 + 32



Tidak ada komentar:

Posting Komentar